If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60t^2+120t-30=0
a = 60; b = 120; c = -30;
Δ = b2-4ac
Δ = 1202-4·60·(-30)
Δ = 21600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21600}=\sqrt{3600*6}=\sqrt{3600}*\sqrt{6}=60\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-60\sqrt{6}}{2*60}=\frac{-120-60\sqrt{6}}{120} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+60\sqrt{6}}{2*60}=\frac{-120+60\sqrt{6}}{120} $
| 60t^2+120t+120=0 | | 60t^2+120t+120=1 | | 5/4=10/6x+5 | | (4x-5)(6x-8)=0 | | x−(−5)=3 | | 13x-6=1/2x+7 | | 12=3a-7 | | q+10=-39 | | s=-10-(-6) | | 3x+7=12;6x-5= | | 3x+7=126x-5= | | 2x+7x=38 | | 5(2x+3)=43 | | 69=y) | | 10x+15=43 | | 4y-5=63 | | x+10=63 | | 5x+5=2-(6x-4) | | 3x^2-56=42 | | -5-(-10)=x | | 7/5w=40/10 | | 6x-8x-2x+4=3x | | 12/5w=130/10 | | 4x+16+3x=37 | | X+x(.05)=478 | | 2x+5+6x=-35 | | c÷2-3=13 | | 5x-10+3=-2 | | 5x-15+1=-19 | | (32-10)+(-4)=c | | 4x-12-2x=-8 | | -6(-7-6a)=-102 |